Ионизирующие и неионизирующие излучения рабочей зоны. Электромагнитные поля и излучения (неионизирующие излучения)

Неионизирующие электромагнитные поля и излучения. Электромагнитное взаимодействие характерно для заряженных частиц. Переносчиком энергии между такими частицами являются фотоны электромагнитного поля или излучения. Длина электромагнитной волны (м) в воздухе связана с ее частотой f (Гц) соотношением λf = с, где с скорость света.

Электромагнитные поля и излучения разделяют на неионизирующие, в том числе лазерное излучение, и ионизирующие. Неионизирующие электромагнитные поля (ЭМП) и излучения (ЭМИ) имеют спектр колебаний с частотой до 10 21 Гц.

Неионизирующие электромагнитные поля естественного происхождения являются постоянно действующим фактором. К ним относятся: атмосферное электричество, радиоизлучения Солнца и галактик, электрические и магнитные поля Земли.

В неионизирующие техногенные источники электрических и магнитных полей и излучений. Их классификация приведена в табл. 2.9.

Применение техногенных ЭМП и ЭМИ различных частот систематизировано в табл. 2.10.

Основными источниками электромагнитных полей радиочастот являются радиотехнические объекты (РТО), телевизионные и радиолокационные станции (РЛС), термические цехи и участки (в зонах, примыкающих к предприятиям). ЭМП промышленной частоты чаще всего связаны с высоковольтными линиями (ВЛ) электропередачи, источниками магнитных полей, применяемыми на промышленных предприятиях.

Таблица 2.9

Классификация неионизирующих техногенных излучений


Показатель

диапазон частот

длина волны

Статическое поле

Электрическое





Магнитное





Электромагнитное поле

Электромагнитное поле промышленной частоты

50 Гц



Электромагнитное излучение радиочастотного диапазона (ЭМИ РЧ)

От 10 кГц до 30 кГц

30 км

От 30 кГц до 3 МГц

100 м

От 3 МГц до 30 МГц

10 м

От 30 МГц до 50 МГц

6 м

От 50 МГц до 300 МГц

1 м

От 300 МГц до 300 ГГц

1 мм

Зоны с повышенными уровнями ЭМП, источниками которых могут быть РТО и РЛС, имеют размеры до 100–150 м. При этом внутри зданий, расположенных в этих зонах , плотность потока энергии, как правило, превышает допустимые значения.

Таблица 2.10

Применение электромагнитных полей и излучений


Частота ЭМП и ЭМИ

Технологический процесс, установка, отрасль

> 0 до 300 Гц

Электроприборы, в том числе бытового назначения, высоковольтные линии электропередачи, трансформаторные подстанции, радиосвязь, научные исследования, специальная связь

0,3–3 кГц

Радиосвязь электропередачи, индукционный нагрев металла, физиотерапия

3–30 кГц

Сверхдлинноволновая радиосвязь, индукционный нагрев металла (закалка, плавка пайка), физиотерапия, УЗ-установки

30–300 кГц

Радионавигация, связь с морскими и воздушными судами, длинноволновая радиосвязь, индукционный нагрев металлов, электрокоррозионная обработка, ВДТ, УЗ-установки

0,3–3 МГц

Радиосвязь и радиовещание, радионавигация, индукционный и диэлектрический нагрев материалов, медицина

3–30 МГц

Радиосвязь и радиовещание, диэлектрический нагрев, медицина, нагрев плазмы

30–300 МГц

Радиосвязь, телевидение, медицина (физиотерапия, онкология), диэлектрический нагрев материалов, нагрев плазмы

0,3–3 ГГц

Радиолокация, радионавигация, радиотелефонная связь, телевидение, микроволновые печи, физиотерапия, нагрев и диагностика плазмы

3–30 ГГц

Радиолокация и спутниковая связь, метеолокация, радиорелейная связь, нагрев и диагностика плазмы, радиоспектроскопия

30–300 ГГц

Радары, спутниковая связь, радиометеорология, медицина (физиотерапия, онкология)

Значительную опасность представляют магнитные поля, возникающие в зонах, прилегающих к электрифицированным железным дорогам. Магнитные поля высокой интенсивности обнаруживаются даже в зданиях, расположенных в непосредственной близости от этих зон.

В быту источниками ЭМП и излучений являются телевизоры, дисплеи, печи СВЧ и другие устройства. Электростатические поля в условиях пониженной влажности (менее 70%) создают паласы, накидки, занавески и т.д. Микроволновые печи в промышленном исполнении не представляют опасности, однако неисправность их защитных экранов может существенно повысить утечки электромагнитного излучения. Экраны телевизоров и дисплеев как источники электромагнитного излучения в быту не опасны даже при длительном воздействии на человека, если расстояния от экрана превышают 30 см.

Электростатическое поле (ЭСП) полностью характеризуется напряженностью электрического поля Е (В/м). Постоянное магнитное поле (ПМП) характеризуется напряженностью магнитного поля Н (А/м), при этом в воздухе 1 А/м – 1,25 мкТл, где Тл – тесла (единица напряженности магнитного поля).

Электромагнитное поле (ЭМП) характеризуется непрерывным распределением в пространстве, способностью распространяться со скоростью света, воздействовать на заря­женные частицы и токи. ЭМП является совокупностью двух взаимосвязанных переменных полей – электрического и магнитного, которые характеризуются соответствующими векторами напряженности Е (В/м) и Н (А/м).

В зависимости от взаимного расположения источника электромагнитного излучения и места пребывания человека необходимо различать ближнюю зону (зону индукции), промежуточную зону и дальнюю зону (волновую зону) или зону излучения. При излучении от источников (рис. 2.11) ближняя зона простирается на расстояние λ/2 π, т. е. приблизительно на 1/6 длины волны. Дальняя зона начинается с расстояний , равных λ*2π, т.е. с расстояний, равных приблизительно шести длинам волны. Между этими двумя зонами располагается промежуточная зона.

Рис. 2.11. Зоны, возникающие вокруг элементарного источника

В зоне индукции, в которой еще не сформировалась бегущая электромагнитная волна, электрическое и магнитное поля следует считать независимыми друг от друга, поэтому эту зону можно характеризовать электрической и магнитной составляющими электромагнитного поля. Соотношение между ними в этой зоне может быть самым различным . Для промежуточной зоны характерно наличие, как поля индукции, так и распространяющейся электромагнитной волны. Для волновой зоны (зоны излучения) характерно наличие сформированного ЭМП, распространяющегося в виде бегущей электромагнитной волны. В этой зоне электрическая и магнитная составляющие изменяются синфазно и между их средними значениями за период существует постоянное соотношение

где ρ в – волновое сопротивление, Ом; , ε – электрическая постоянная; μ – магнитная проницаемость среды.

Колебания векторов E и Н происходят во взаимно перпендикулярных плоскостях. В волновой зоне воздействие ЭМП определяется плотностью потока энергии, переносимой электромагнитной волной. При распространении электромагнитной волны в проводящей среде векторы Е и Н связаны соотношением

где ω – круговая частота электромагнитных колебаний, Гц; v – удельная электропроводность вещества экрана; z – глубина проникновения электромагнитного поля.

При распространении ЭМП в вакууме или в воздухе, где ρ в = 377 Ом, Е = 377Н. Электромагнитное поле несет энергию, определяемую плотностью потока энергии (1 = ЕН (Вт/м 2)), которая показывает, какое количество энергии протекает за 1 с сквозь площадку в 1 м 2 , расположенную перпендикулярно движению волны.

При излучении сферических волн плотность потока энергии в волновой зоне может быть выражена через мощ­ность Р ист, подводимую к излучателю:

где R – расстояние до источника излучения, м.

Воздействие электромагнитных полей на человека зависит от напряженностей электрического и магнитного полей, потока энергии, частоты колебаний, наличия сопутствую­щих факторов, режима облучения, размера облучаемой по­верхности тела и индивидуальных особенностей организма. Установлено также, что относительная биологическая ак­тивность импульсных излучений выше непрерывных. Опасность воздействия усугубляется тем, что оно не обнаруживается органами чувств человека.

Воздействие электростатического поля (ЭСП) на человека связано с протеканием через него слабого тока (несколько микроампер). При этом электротравм никогда не наблюдается. Однако вследствие рефлекторной реакции на электрический ток (резкое отстранение от заряженного тела) возможна механическая травма при ударе о рядом расположенные элементы конструкций, падение с высоты и т.д. Исследование биологических эффектов показало, что наиболее чувствительны к электростатическому полю ЦНС, сердечно-сосудистая система, анализаторы. Люди, работающие в зоне воздействия ЭСП, жалуются на раздражительность, головную боль, нарушения сна и др.

Воздействие магнитных полей (МП) может быть постоянным (от искусственных магнитных материалов) и импульсным. Степень воздействия МП на работающих зависит от его максимальной напряженности в пространстве магнитного устройства или в зоне влияния искусственного магнита. Доза, полученная человеком, зависит от расположения по отношению к МП и режима труда. При действии переменного магнитного поля наблюдаются характерные зрительные ощущения, которые исчезают в момент прекращения воздействия. При постоянной работе в условиях хронического воздействия МП , превышающих предельно допустимые уровни, наблюдаются нарушения функций ЦНС, сердечно-сосудистой и дыхательной систем, пищеварительного тракта, изменения в крови. Длительное действие приводит к расстройствам, которые субъективно выражаются жалобами на головную боль в височной и затылочной области, вялость, расстройство сна, снижение памяти, повышенную раздражительность, апатию, боли в области сердца.

При постоянном воздействии ЭМП промышленной частоты наблюдаются нарушения ритма и замедление частоты сердечных сокращений. У работающих в зоне ЭМП промышленной частоты могут наблюдаться функциональные нарушения ЦНС и сердечно-сосудистой системы, а также изменения в составе крови.

При воздействии ЭМП радиочастотного диапазона атомы и молекулы, из которых состоит тело человека , поляризуются. Полярные молекулы (например, воды) ориентируются по направлению распространения электромагнитного поля; в электролитах, которыми являются жидкие составляющие тканей, крови и т.п., после воздействия внешнего поля появляются ионные токи. Переменное электрическое поле вызывает нагрев тканей человека как за счет переменной поляризации диэлектрика (сухожилия, хрящи и т.д.), так и за счет появления токов проводимости. Тепловой эффект является следствием поглощения энергии электромагнитного поля. Чем больше напряженность поля и время воздействия, тем сильнее проявляются указанные эффекты. Избыточная теплота отводится до известного предела путем увеличения нагрузки на механизм терморегуляции. Однако, начиная с величины I = 10 мВт/см 2 , называемой тепловым порогом, организм не справляется с отводом образующейся теплоты , и температура тела повышается, что приносит вред здоровью.

Наиболее интенсивно электромагнитные поля воздействуют на органы с большим содержанием воды. При одинаковых значениях напряженности поля коэффициент погло­щения в тканях с высоким содержанием воды примерно в 60 раз выше, чем в тканях с ее низким содержанием . С уве­личением длины волны глубина проникновения электро­магнитных волн возрастает; различие диэлектрических свойств тканей приводит к неравномерности их нагрева, возникновению макро- и микротепловых эффектов со значительным перепадом температур.

Перегрев особенно вреден для тканей со слаборазвитой сосудистой системой или с недостаточным кровообращением (глаза, мозг, почки, желудок, желчный и мочевой пузырь). Облучение глаз может привести к помутнению хрусталика (катаракте), которое обнаруживается не сразу, а через несколько дней или недель после облучения. Развитие катаракты является одним из немногих специфических поражений, вызываемых электромагнитными излучениями радиочастот в диапазоне 300 МГц – 300 ГГц при плотности потока энергии свыше 10 мВт/см 2 . Помимо катаракты при воздействии ЭМП возможны ожоги роговицы.

Для длительного действия ЭМП различных диапазонов длин волн при умеренной интенсивности (выше ПДУ) характерным считают развитие функциональных расстройств в ЦНС с нерезко выраженными сдвигами эндокринно-обменных процессов и состава крови. В связи с этим могут появиться головные боли, повышение или понижение давления, снижение частоты пульса, изменение проводимости в сердечной мышце, нервно-психические расстройства, быстрое развитие утомления. Возможны трофические нарушения: выпадение волос, ломкость ногтей, снижение массы тела. Наблюдаются изменения возбудимости обонятельного, зрительного и вестибулярного анализаторов. На ранней стадии изменения носят обратимый характер, при продолжающемся воздействии ЭМП происходит стойкое снижение работоспособности. В пределах радиоволнового диапазона доказана наибольшая биологическая активность микроволнового (СВЧ) поля. Острые нарушения при воздействии ЭМИ (аварийные ситуации) сопровождаются сердечно-сосудистыми расстройствами с обмороками, резким учащением пульса и снижением артериального давления.

Неионизирующие излучения на производстве

Неионизирующие излучения - это электромагнитные излучения различной частоты, не вызывающие ионизацию атомов и молекул вещества.

На следующем примере легко представить электромагнитное излучение или электромагнитную волну.

Если на водную гладь бросить камушек, то на поверхности образуются расходящиеся кругами волны. Они движутся от источника их возникновения (возмущения) с определенной скоростью распространения. Для электромагнитных волн возмущениями являются передвигающиеся в пространстве электрические и магнитные поля. Меняющееся во времени электрическое поле обязательно вызывает появление переменного магнитного поля, и наоборот. Эти поля взаимосвязаны (см. рис. 2).

Основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества. Электромагнитные волны также переносят энергию, тем большую, чем больше их частота. Энергия электромагнитных волн воздействует на организм человека.


Экспериментальные данные как отечественных, так и зарубежных исследователей свидетельствуют о высокой биологической активности электромагнитных полей во всех частотных диапазонах. При относительно низком уровне электромагнитного поля (к примеру, для радиочастот выше 300 МГц это менее 1 мВт/см2) принято говорить о нетепловом или информационном характере воздействия на организм. Механизмы действия электромагнитного поля в этом случае еще мало изучены.

Геомагнитное поле

Геомагнитное поле (ГМП) - это постоянное магнитное поле Земли.

Ослабление геомагнитного поля оказывает отрицательное влияние на здоровье человека.

Средняя напряженность поля на поверхности Земли составляет около 0,5 э (Эрстед) или 40 А/м, и сильно зависит от географического положения. Напряженность магнитного поля на магнитном экваторе около 0,34 э (Эрстед), у магнитных полюсов около 0,66 э. В некоторых районах (в так называемых районах магнитных аномалий) напряженность резко возрастает. В районе Курской магнитной аномалии она достигает 2 э.

Ослабление ГМП в производственных условиях происходит в экранированных сооружениях (экранирование от электромагнитных полей, генерируемых размещенным в помещении оборудованием), в подземных сооружениях метрополитена, в зданиях, выполненных из железобетонных конструкций, в кабинах скоростных лифтов, в кабинах буровых установок и экскаваторов, в салонах легковых автомобилей, в самолетах, на подводных лодках, в банковских хранилищах и т.д.

Нормируемые величины

Оценка и нормирование уровня ослабления геомагнитного поля производится на основании определения его интенсивности внутри помещения, объекта, транспортного средства и в открытом пространстве на территории, прилегающей к месту его расположения, с последующим расчетом коэффициента ослабления ГМП.

Коэффициент ослабления интенсивности ГМП равен отношению интенсивности ГМП открытого пространства к его интенсивности внутри помещения.

Классы условий труда по показателю «геомагнитное поле» приведены в таблице 2. Вредные условия труда по данном показателю определяются кратностью превышения ВДУ (раз).

Таблица 2

Методика измерения

Измерения интенсивности геомагнитного поля внутри помещения на каждом рабочем месте производятся на 3-х уровнях от поверхности пола с учетом рабочей позы:

· 0,5 м, 1,0 м и 1,2 м - при рабочей позе сидя;

· 0,5 м, 1,0 м и 1,7 м - при рабочей позе стоя.

Определяющим при расчете коэффициента ослабления ГМП является минимальное из всех зарегистрированных на рабочем месте значений интенсивности ГМП.

Средства измерений

Контроль гипогеомагнитных условий осуществляется посредством инструментальных измерений с использованием приборов ненаправленного приема, оснащенных изотропными датчиками, предназначенных для определения величины напряженности или индукции постоянного магнитного поля, с допустимой относительной погрешностью измерения не более 20% (Например, магнитометр трехкомпонентный малогабаритный - МТМ-0. Диапазон измерения напряженности магнитного поля от 0.5 до 200 А/м (см. рис. 4).

Рисунок 4

Электростатическое поле

Электростатические поля - поля неподвижных электрических зарядов или стационарные электрические поля постоянного тока.


Рисунок 5

Электростатические поля обладают сравнительно низкой биологической активностью и не вызывают заметных функциональных изменений в организме человека.

Нормируемые величины

Оценка и нормирование ЭСП осуществляется по уровню напряженности электрического поля дифференцированно в зависимости от времени его воздействия на работника за смену.

В соответствии с п. 3.2.3. Санитарных правил и нормативов СанПиН 2.2.4.1191-03 «Электромагнитные поля в производственных условиях», предельно допустимый уровень напряженности электростатического поля Епду при воздействии <= 1 час за смену устанавливается равным 60 кВ/м.

При воздействии электростатического поля более 1 часа за смену Епду определяются по формуле:

где t - время воздействия (час).

Таким образом, для 8-часовой рабочей смены Епду будет равен 21,2 кВ/м.

Классы условий труда по показателю «электростатическое поле» приведены в таблице 3. Вредные условия труда по данному показателю определяются кратностью превышения ПДУ (раз).

Таблица 3


Методика измерения

Согласно СанПиН 2.2.4.1191-03 «Электромагнитные поля в производственных условиях» измерения проводят на высоте 0,5; 1,0 и 1,7 м (рабочая поза «стоя») и 0,5; 0,8 и 1,4 м (рабочая поза «сидя») от опорной поверхности. При гигиенической оценке напряженности ЭСП на рабочем месте определяющим является наибольшее из всех зарегистрированных значений.

Средства измерений

Измерение уровня электростатических полей проводятся приборами ЭСПИ-301, ИЭСП-01 (см. рис. 6).


Рисунок 6

Предельно допустимый уровень напряженности электростатического поля (Е) при воздействии 1 час за смену устанавливается равным 60 кВ/м.

Постоянное магнитное поле

Постоянное магнитное поле - не изменяющееся со временем магнитное поле. Магнитное поле создается движущимися электрическими зарядами и изменяющимися электрическими полями.

Источниками постоянных магнитных полей (ПМП) на рабочих местах являются постоянные магниты, электромагниты, сильноточные системы постоянного тока (линии передачи постоянного тока, электролитные ванны и другие электротехнические устройства).

К воздействию ПМП у человека наиболее чувствительны системы, выполняющие регуляторные функции (нервная, сердечно-сосудистая, нейроэндокринная и др.).

Нормируемые величины

Оценка и нормирование ПМП осуществляется по уровню напряженности магнитного поля дифференцированно в зависимости от времени его воздействия на работника за смену для условий общего (на все тело) и локального (кисти рук, предплечье) воздействия.

Уровень ПМП оценивают в единицах напряженности магнитного поля (Н) в А/м или в единицах магнитной индукции (В) в мТл.

ПДУ напряженности (индукции) ПМП на рабочих местах представлены в таблице 4.

Таблица 4


Классы условий труда по показателю «постоянное магнитное поле» приведены в таблице 5. Вредные условия труда по данному показателю определяются кратностью превышения ПДУ (раз).

Таблица 5


Методика измерения

Согласно СанПиН 2.2.4.1191-03 «Электромагнитные поля в производственных условиях» измерения проводят на высоте 0,5; 1,0 и 1,7 м (рабочая поза «стоя») и 0,5; 0,8 и 1,4 м (рабочая поза «сидя») от опорной поверхности.

Средства измерений

Для измерения постоянного магнитного поля можно применять следующие приборы: ТП2-2У, Ф-4354/1, Ф-4355, Ф-4325, ЕТМ-1 (производства «Wandel & Goltermann», Германия) (см. рис. 7).

Рисунок 7

Транспорт на электрической тяге - электропоезда (в том числе поезда метрополитена), троллейбусы, трамваи и т. п. - является относительно мощным источником магнитного поля в диапазоне частот от 0 до 1000 Гц. Максимальные значения плотности потока магнитной индукции в пригородных «электричках» достигают 75 мкТл при среднем значении 20 мкТл. Среднее значение магнитной индукции на транспорте с электроприводом постоянного тока зафиксировано на уровне 29 мкТл


Рисунок 8

Электромагнитные поля промышленной частоты

Электромагнитные поля промышленной частоты - электромагнитные поля с частотой 50 Гц.

Основными источниками электромагнитных полей промышленной частоты являются различные типы промышленного и бытового электрооборудования переменного тока частоты 50 Гц, в первую очередь, подстанции и воздушные линии электропередачи сверхвысокого напряжения, а также электробытовые приборы и электроинструмент, работающие от сети, электропроводка внутри зданий, станки и конвейерные линии, осветительная сеть, офисная техника, электротранспорт и т.п.

Основную опасность для человека представляет влияние на возбудимые структуры (нервная, мышечная ткани) наведенного электромагнитными полями промышленной частоты электрического тока. При этом для электрических полей рассматриваемого диапазона характерно слабое проникновение в тело человека, а для магнитных полей - организм практически прозрачен.

Нормируемые величины

Контроль уровней ЭМП частотой 50 Гц осуществляется раздельно для электрического и магнитного полей. Измеряемые величины: напряженность электрического поля Е [В/м] и напряженность магнитного поля Н [А/м].

Нормирование электромагнитных полей 50 Гц на рабочих местах персонала дифференцировано в зависимости от времени пребывания в электромагнитном поле.

Предельно допустимый уровень напряженности ЭП на рабочем месте в течение всей смены устанавливается равным 5 кВ/м.

При напряженностях в интервале больше 5 до 20 кВ/м включительно допустимое время пребывания в ЭП Т (час) рассчитывается по формуле:

Е - напряженность ЭП в контролируемой зоне, кВ/м;

Т - допустимое время пребывания в ЭП при соответствующем уровне напряженности, ч.

При напряженности свыше 20 до 25 кВ/м допустимое время пребывания в ЭП составляет 10 мин.

Пребывание в ЭП с напряженностью более 25 кВ/м без применения средств защиты не допускается.

Предельно допустимые уровни напряженности периодических (синусоидальных) МП устанавливаются для условий общего (на все тело) и локального (на конечности) воздействия.

ПДУ воздействия периодического магнитного поля частотой 50 Гц представлены в таблице 6.

Таблица 6


Классы условий труда по показателю «электромагнитные поля промышленной частоты» приведены в таблице 7. Вредные условия труда по данному показателю определяются кратностью превышения ПДУ (раз).

Таблица 7


Методика измерения

Согласно СанПиН 2.2.4.1191-03 «Электромагнитные поля в производственных условиях» измерения напряженности ЭП и МП частотой 50 Гц должны проводиться на высоте 0,5; 1,5 и 1,8 м от поверхности земли, пола помещения или площадки обслуживания оборудования и на расстоянии 0,5 м от оборудования и конструкций, стен зданий и сооружений. Измерения и расчет напряженности электрического поля должны производиться при наибольшем рабочем напряжении электроустановки, а измерения и расчет напряженности (индукции) магнитного поля должны производиться при максимальном рабочем токе электроустановки.

Средства измерений

Измерения напряженностей электрического и магнитного полей промышленной частоты можно выполнить приборами П3-50, NFM-1 (см. рис. 9).

Рисунок 9

Электромагнитные поля на рабочем месте пользователя ПЭВМ


Рисунок 10

Нормируемые величины

Электромагнитное поле, создаваемое персональным компьютером, имеет сложный спектральный состав в диапазоне частот от 0 Гц до 1000 МГц (см. табл. 8).

Таблица 8


Классы условий труда по показателю «электромагнитные поля на рабочем месте пользователя ПЭВМ» приведены в таблице 9.

Таблица 9


Методика измерения

Согласно СанПиН 2.2.2/2.4.1340-03 «Гигиенические требования к персональным электронно-вычислительным машинам и организации работ» измерение уровней переменных электрических и магнитных полей, статических электрических полей на рабочем месте, оборудованном ПЭВМ, производится на расстоянии 50 см от экрана на трех уровнях на высоте 0,5 м, 1,0 м и 1,5 м. Измерения параметров электростатического поля проводить не ранее, чем через 20 минут после включения ПЭВМ.

Если на обследуемом рабочем месте, оборудованном ПЭВМ, интенсивность электрического и/или магнитного поля в диапазоне 5 - 2000 Гц превышает значения, приведенные в таблице 10, следует проводить измерения фоновых уровней ЭМП промышленной частоты (при выключенном оборудовании). Фоновый уровень электрического поля частотой 50 Гц не должен превышать 500 В/м.

Таблица 10. Временные допустимые уровни ЭМП, создаваемых ПЭВМ на рабочих местах


электростатический заряд гигиенический труд

Средства измерений

Измерение электромагнитных полей, создаваемых ПЭВМ, проводят с помощью приборов ИМП-05 для измерения плотности магнитного потока, ИЭП-05 для измерения напряженности электрического поля, В-Е метра, П3-70 (см. рис. 11).


Состояние работающего при воздействии на него неионизирующего излучения

Как в России, так и за рубежом исследования, свидетельствуют, что ЭМП обладает выраженным негативным биологическим действием и в зависимости от интенсивности ЭМИ, времени облучения, частоты и характера сигнала, могут вызывать существенные изменения в состоянии практически всех систем организма человека и других живых существ - как обратимые, так и достаточно стойкие.

Наиболее чувствительными у биологическому воздействию ЭМП является нервная, иммунная и эндокринная системы организма человека, а так же сердечно-сосудистая и репродуктивная.

Важно отметить, что биологический эффект ЭМП накапливается на всем протяжении времени этого воздействия, в результате чего возможно развитие отдаленных последствий, обычно в течении ряда лет.

В результате возникают и развиваются различные заболевания вплоть до самых тяжелых, как рак крови, опухоли мозга и других органов, гормональные заболевания, негативные процессы в функционировании ЦНС.

Человеческий организм сам является электромагнитным устройством, имеет естественную частоту вибрации внутренних органов. Внешние воздействия при сходстве электромагнитных колебаний вызывают наносящие вред помехи или нежелательно высокое резонансное усиление эндогенной биологической активности. И то и другое приводит к функциональному расстройству внутренних органов, а при длительном воздействии - к патологии и где то есть черта, за которой процесс разрушения организма становится необратимым.

Учитывая распространенность и возрастающую мощность источников электромагнитных излучений в среде обитания, ученые всего мира пришли к выводу, что ЭМИ по своему разрушительному воздействию на организм человека не уступает радиации, что делает проблему электромагнитной безопасности чрезвычайно актуальной.

Понятие "неионизирующие излучения"

Из курса физики хорошо известно, что распространение энергии происходит в виде мелких частиц и волн, процесс испускания и распространения которой называется излучением .

Различают 2 основных вида излучения по воздействию на предметы и живые ткани :

  1. Ионизирующее излучение . Это потоки элементарных частиц, образующиеся в результате деления атомов – радиоактивное излучение, альфа, бета, гамма, рентгеновское излучение. К этому же виду излучения относится гравитационное излучение и лучи Хокинга ;
  2. Неионизирующие излучения . По своей сути это электромагнитные волны , длиной больше $1000$ нм и выделенной энергией меньше $10$ кэВ. Излучение происходит в виде микроволн, с выделением света и тепла.

Неионизирующее излучение в отличие от первого, не разрывает связи между молекулами вещества, на которое воздействует. Но, надо сказать, что здесь есть свои исключения, например, УФ-лучи могут ионизировать вещество. К электромагнитным относятся высокочастотные рентгеновские и гамма лучи, только они более жесткие и ионизируют вещество.

Остальные электромагнитные излучения являются неионизирующими и вмешаться в структуру материи не могут, потому что их энергии для этого не хватает. Видимое световое и уф-излучения тоже неионизирующие, а световое излучение называют часто оптическим . Образуется оно при нагревании тел и своим спектром близко к инфракрасным лучам.

Инфракрасное излучение широко применяется в медицинской практике. Его используют для улучшения метаболизма, стимуляции кровообращения, дезинфекции продуктов питания. Однако, излишний нагрев приводит к иссушению слизистой оболочки глаза, а максимальная мощность излучения способна разрушить молекулу ДНК.

Способностью к ионизации может обладать ультрафиолетовое излучение, приближенное к рентгеновскому. Уф-лучи способны вызвать различные мутации, ожоги кожи, роговицы глаз. Медицина с помощью УФ-лучей синтезирует в коже витамин D3. C их помощью обеззараживают воду, воздух, стерилизуют оборудование.

Неионизирующие электромагнитные излучения бывают природного и искусственного происхождения. Природным источником является Солнце, посылающее все виды излучения. В полном объеме до поверхности планеты они не доходят. Благодаря атмосфере Земли, слою озона, влажности, углекислому газу их вредное воздействие смягчается. Молния, космические объекты могут стать естественными источниками для радиоволн. Любое тело, нагретое до нужной температуры, способно испускать тепловые инфракрасные лучи, несмотря на то, что основное излучение исходит от искусственных объектов. В данном случае к основным источникам можно отнести обогреватели, горелки, имеющиеся в каждом доме лампы накаливания.

Поскольку радиоволны передаются по любым электрическим проводникам, то все электроприборы становятся искусственными источниками .

Сила воздействия электромагнитного излучения зависит от длины волны, частоты и поляризации. Волны большой длины на объект переносят меньше энергии, поэтому являются менее вредными.

Воздействие на человека неионизирующего излучения имеет $2$ стороны – длительное воздействие приносит вред здоровью, умеренные дозы могут быть полезны .

Воздействие электромагнитных полей на человека

Электромагнитные поля, так или иначе, оказывают свое воздействие на человека.

Это воздействие связано с:

  1. напряженностью электрического и магнитного полей;
  2. плотностью потока энергии;
  3. частотой колебаний;
  4. режимом облучения;
  5. размером облучаемой поверхности тела;
  6. индивидуальными особенностями организма.

Усугубляет опасность воздействия излучения тот факт, что органы чувств человека его не могут обнаружить. На человека электростатическое поле (ЭСП) воздействует в виде прохождения через него слабого, в несколько микроампер, тока, без наблюдения электротравм. Но, у людей может быть рефлекторная реакция на электрический ток, в этом случае возможна механическая травма , например, можно удариться об элементы конструкции, расположенной рядом. Достаточно чувствительны к электростатическим полям центральная нервная система, анализаторы, сердечнососудистая система. Раздражительность, головная боль, нарушения сна – это те проявления, которые наблюдаются у людей, работающих в зоне воздействия ЭСП.

Магнитные поля (МП) могут действовать непрерывно и прерывисто, степень воздействия которых зависит от того, насколько сильно напряжено поле в пространстве вблизи магнитного устройства. От того, где расположен человек по отношению к МП и режим его труда, зависит получаемая доза. Зрительные ощущения отмечаются при действии переменного магнитного поля , но, с прекращением воздействия эти ощущения исчезают. Серьезные нарушения происходят в условиях хронического воздействия МП, превышающих предельно допустимые уровни. В этом случае наблюдаются нарушение функций ЦНС, сердечнососудистой и дыхательной системы, пищеварительного тракта, происходят изменения в крови. Нарушается ритм и замедляется частота сердечных сокращений при постоянном воздействии ЭМП промышленной частоты.

Тело человека, состоящее из атомов и молекул, под воздействием ЭМП радиочастотного диапазона, поляризуется, происходит следующее:

  1. В направлении распространения электромагнитного поля ориентируются полярные молекулы, например, молекулы воды;
  2. Появляются после воздействия ионные токи в электролитах, а это жидкие составляющие тканей, крови;
  3. Ткани человека нагреваются, что вызывается переменным электрическим полем. Происходит это как за счет переменной поляризации диэлектрика, так и за счет появляющейся проводимости тока.

Следствием поглощения энергии электромагнитного поля является тепловой эффект . При нарастающей напряженности и времени воздействия указанные эффекты проявляются сильнее.

Электромагнитные поля сильнее и интенсивнее воздействуют на органы, содержащие большое количество воды и будут примерно в $60$ раз выше по сравнению с воздействием на органы, с низким содержанием воды. Если длина электромагнитной волны будет увеличена, то глубина её проникновения возрастает. Ткани неравномерно нагреваются в результате различий диэлектрических свойств, возникают макро и микро тепловые эффекты с перепадом температур. Слаборазвитая сосудистая система испытает шок, который проявится в недостаточном кровообращении глаз, мозга, почек, желудка, желчного пузыря, мочевого пузыря.

Одним из немногих специфических поражений , которые вызываются электромагнитными излучениями, являются глаза и возможное развитие катаракты. Это поражение вызывается электромагнитным излучением радиочастот в диапазоне $300$ МГц… $300$ ГГц при плотности потока энергии выше $10$ мВт/кв. см. Характерными при длительном действии ЭМП различных диапазонов длин волн, считаются функциональные расстройства в ЦНС с часто выраженными сдвигами эндокринно-обменных процессов и состава крови, работоспособность, как правило, снижается. Изменения носят обратимый характер только на ранней стадии.

Неионизирующие электромагнитные поля

Заряженные частицы характеризуются электромагнитным взаимодействием . Энергия между этими частицами передается фотонами электромагнитного поля.

В воздухе длина электромагнитной волны λ(м) связана с её частотой ƒ(Гц) соотношением λƒ = с, ,где с – скорость света, м/с.

Спектр колебаний с частотой $10$ $17$ Гц имеют неионизирующие электромагнитные поля, в то время как ионизирующие – от $10$ $17$ до $10$ $21$ Гц.

Неионизирующие электромагнитные поля , имеющие естественное происхождение, являются постоянно действующим фактором. Их источники – атмосферное электричество, солнечное и галактическое радиоизлучение, электрическое и магнитное поля планеты.

С такими источниками как высоковольтные линии электропередач, использующимися на промышленных предприятиях источниками магнитных полей чаще всего связаны электромагнитные поля промышленной частоты .

В зонах, близко расположенных к электрифицированным железным дорогам, возникающие магнитные поля представляют значительную опасность . Даже в зданиях, расположенных недалеко от этих зон, обнаруживаются магнитные поля высокой интенсивности.

Замечание 1

На бытовом уровне к источникам электромагнитных полей и излучений относятся телевизоры, печи СВЧ, радиотелефоны и ряд других устройств, работающих в широком диапазоне частот. При влажности менее $70$ % электростатические поля создают паласы, накидки, занавески и др. Такая бытовая техника как микроволновая печь промышленного исполнения не опасна. Но, в том случае, если их защитные экраны неисправны, утечка электромагнитного излучения повышается. Экраны телевизоров и дисплеев даже при длительном воздействии на человека не будут представлять опасности как источники электромагнитного излучения при условии, что расстояние от экрана более $30$ см.

Источники электромагнитного излучения бывают естественные искусственные. К естественным относится магнитное поле Земли. Оно характеризуется напряженностью, которая измеряется в В/м. Напряженность магнитного поля Земли возрастает с возрастанием широты. Имеются также региональные и локальные особенности и аномалии. Некоторые аномалии используются в качестве поисковых признаков полезных ископаемых, прежде всего залежей железной руды (например, Курская магнитная аномалия).

Магнитное поле Земли оказывает сильное влияние на электрические частицы, движущиеся в околоземном пространстве. Частицы заполняют кольца и пояса, охватывающие Землю вокруг геомагнитного экватора. Существуют два радиационных пояса вокруг Земли: внутренний и внешний. Внутренний пояс состоит из протонов, а внешний из электронов. Вся область околоземного пространства, заполненная заряженными частицами, называется магнитосферой. Под влиянием потоков заряженных частиц магнитное поле Земли испытывает время от времени кратковременные изменения: магнитные бури и полярные сияния.

К искусственным источникам электромагнитных излучений относятся индукторы, конденсаторы, антенны, линии электропередачи, радиопередающие устройства и т.п. Искусственные источники бывают точечные и линейные. К точечным относятся антенны, электрооборудование и т.п. К линейным - высоковольтные линии электропередачи промышленной частоты с напряжением линии 330-350 кВ и выше, а также линии постоянного тока с напряжением 1000 кВ и выше. Токи промышленной частоты являются сильными источниками электромагнитных волн. Напряженность поля в районах нахождения ЛЭП может достигать нескольких тысяч вольт на 1 метр. В местах наибольшего провисания проводов напряженность составляет 5000В/м. Однако электроволны хорошо поглощаются почвой, и уже на расстоянии 50-100 м напряжение поля падает до нескольких десятков и сотен вольт на метр. Экранирующий эффект оказывают деревья, кустарники, здания, рельеф местности.

Описанные выше источники электромагнитного излучения являются неионизирующими .

Излучение с очень высокой энергией, которое способно выбивать электроны из атомов и присоединять их к другим атомам с образованием положительных и отрицательных ионов, называется ионизирующим излучением. Его источниками являются радиоактивные вещества горных пород или поступающие из космоса. К ионизирующим излучениям относятся корпускулярные (альфа-, бета-излучение, нейтронное) и электромагнитные (гамма - излучение, рентгеновское) излучения.Корпускулярные излучения состоят из потока атомных и субатомных частиц, которые передают свою энергию всему, с чем сталкиваются. Альфа-частица - это дважды ионизированный атом гелия 4 2 Не. Она образуется в результате альфа-распада, например, изотопа урана

Для защиты населения от электромагнитного излучения устанавливаются предельно допустимые уровни (ПДУ) напряженности электромагнитного поля, особенно при отборе территории для жилой застройки.

Защита населения и окружающей среды от ионизирующих излучений осуществляется путем строительства специальных помещений, создания санитарно-защитных зон и могильников для надежного захоронения отходов, изоляции источника излучения от окружающей среды.

Материалы, располагаемые между источником излучения и зоной размещения персонала или оборудования для ослабления потоков ионизирующего излучения, называется защитой . Защиту квалифицируют по назначению, типу, компоновке, геометрии. Защита должна обеспечивать : допустимый уровень облучения персонала; допустимый уровень радиационных повреждений конструкционных и защитных материалов; допустимый уровень радиационного энерговыделения и температурного распределения в конструкционных и защитных материалах. В соответствии с этим защиты бывает биологическая, радиационная, тепловая. Радиационная и тепловая защиты необходимы только для мощных источников излучения ядерно-технических установок. При работе с изотопными источниками необходимости в такой защите не возникает. Защита по геометрии бывает сплошная (целиком окружает источник излучения), раздельная (наиболее мощные источники излучения окружает первичная защита, а между первичной им вторичной защитой имеются также источники излучения), частичная (ослабленная защиты для областей ограниченного доступа персонала) и другая. По компоновке защита бывает гомогенная (из одного защитного материала) и гетерогенная (из различных материалов).

Электромагнитные поля и электромагнитные излучения являются вредными факторами, которые негативно влияют на человека и окружающую среду. Электромагнитные излучения - это не только источник образования электромагнитного поля, но и сам процесс. Электромагнитные поля представляет собой особую форму материи, состоящую из взаимосвязанных электрического и магнитного полей. Напряженности этих полей расположены перпендикулярно друг другу. Непрерывно изменяясь, они возбуждают друг друга. Электромагнитное поле сохраняется и оказывает негативное воздействие еще долгое время после того, как источник его возникновения (излучатель) прекратил или приостановил свое действие.

Степень воздействия на работающих магнитного поля зависит от его параметров (основных характеристик). Основными параметрами источника ЭМП являются: частота электромагнитных колебаний (единица - Гц) и длина волны (единица - м). Критерием интенсивности электрического поля служит его напряженность (единица - В/м). Критерием интенсивности магнитного поля также является его напряженность (единица - А/м).

К основным неионизирующим ЭМП и ЭМИ относятся:

  • - геомагнитное поле Земли;
  • - электрические и магнитные поля промышленной частоты;
  • - электромагнитные излучения радиочастотного диапазона;
  • - электромагнитные излучения оптического диапазона;
  • - электростатические поля.

Геомагнитное поле Земли характеризуется постоянно изменяющейся напряженностью. Значительные изменения интенсивности ЭМП могут происходить при геомагнитных природных возмущениях -- магнитных бурях. Организм метеочувствительных людей реагирует на резкие возрастания естественного геомагнитного поля повышением артериального давления, головной болью, общей слабостью.

Электромагнитные поля в диапазоне частот от 0 до 3000 Гц условно называют электромагнитными полями промышленной частоты. Мощными источниками излучения электромагнитной энергии являются провода высоковольтных линий электропередач промышленной частоты 50 Гц. Напряженность электромагнитного поля непосредственно над проводами и в определенной зоне вдоль трассы линий электропередач может значительно превышать предельно допустимый уровень электромагнитной безопасности населения. На объектах железнодорожного транспорта источники электромагнитного поля - это системы электроснабжения электрифицированных железнодорожных линий, силовые трансформаторные подстанции, транспорт на электроприводе, системы и линии электропередач депо, грузовых районов станций, пунктов обработки вагонов и ремонтных производств, электросети административных зданий. К примеру, электротранспорт является весьма мощным источником магнитных полей промышленной частоты. В производственных помещениях с большим количеством различного электрооборудования всегда имеется большое количество электропроводки, находящейся под постоянным напряжением. При этом она не всегда экранирована. Наличие железосодержащих конструкций и коммуникаций в зданиях создает эффект «экранированного помещения», что усиливает электромагнитный фон, не позволяя ему рассеиваться. Воздействие ЭМИ особенно вредно для тканей с недостаточным кровообращением (глаза, мозг, почки, желудок, желчный пузырь и мочевой пузырь). В условиях постоянного воздействия на рабочем месте ЭМП промышленных частот, превышающих ПДУ, у работников могут наблюдаться: нарушения функций иммунной, сердечно-сосудистой и дыхательной систем, пищеварительного тракта, изменения в крови. Возможны последствия на генетическом уровне. При местном воздействии ЭМП (прежде всего на руки) проявляются ощущение зуда, бледность, синюшность, отечность, уплотнение, а иногда ороговение кожных покровов.

Большую часть неионизирующих электромагнитных излучений очень широкого диапазона длин волн (от 10 км до 1 мм) и частот (от 0,003 до 300 ГГц) составляют электромагнитные поля радиочастотного диапазона (РМП РЧ), или радиоволны. Свойство электромагнитных волн распространяться в пространстве и различных средах широко используют в радиосвязи, телевидении, радиолокации, а свойство отражаться от границы разных сред нашло применение в дефектоскопии для выявления внутренних пороков в структуре металла. Источниками ЭМП радиочастотного диапазона в производственных процессах являются промышленные установки, предназначенные для:

  • - индукционного нагрева металлов под закалку;
  • - нанесения твердых покрытий на режущий инструмент;
  • - плавки металлов и полупроводников,
  • - выращивания полупроводниковых кристаллов,
  • - сварки синтетических материалов,
  • - прессовки синтетических порошков,
  • - дефектоскопии.

В радиоаппаратуре к сильным источникам ЭМИ и ЭМП в первую очередь относятся антенны, компьютеры и другая оргтехника, мобильные радиотелефоны; в медицине - приборы ультразвуковой диагностики, рентгеновские аппараты и др.

К излучениям оптического диапазона относятся:

  • - излучения видимой области спектра (человек имеет к ним наибольшую чувствительность); - ультрафиолетовые (УФ) излучения;
  • - излучения инфракрасного (ИК) спектра; - лазерные излучения (ЛИ).

Излучения видимой области спектра. Видимое (световое) излучение - это электромагнитные колебания с длиной волны 0,78-0,4 мкм. Источником видимого светового излучения является электродуговая сварка. Она дает световой поток большой энергии с присутствием УФ спектра излучения.

Электромагнитные излучения инфракрасного диапазона (ЭМИ ИК). Тепловое, или инфракрасное, излучение представляет собой часть электромагнитных излучений с длиной волны от 0,780 до 1000 мкм, энергия которых при поглощении веществом вызывает тепловой эффект. В производственных помещениях гигиеническое значение имеет более узкий диапазон от 0,78 до 70 мкм. Источниками ИК - излучений являются нагретые до высокой температуры плавильные печи, расплавленный металл, газосветные лампы, ртутные выпрямители и другое производственное оборудование.

Ультрафиолетовое излучение (УФИ) - это спектр ЭМИ с длиной волны от 0,2 до 0,4 мкм. Источники УФИ могут быть естественного и искусственного (техногенного) происхождения. Источником естественного происхождения является одна из составляющих потока солнечного излучения. Источниками искусственного происхождения являются лампы дневного света, электросварочные дуги, автогенное пламя, плазмотроны, ртутно - кварцевые горелки.

Лазерное излучение (ЛИ) представляет собой особый вид ЭМИ оптического диапазона с длиной волны 0,1- 1000 мкм. Отличие лазерного излучения от других видов ЭМИ заключается в том, что источник изучения испускает электромагнитные волны строго в одной фазе, одной длины волны и с острой направленностью луча. Основным источником ЛИ является лазер (оптический квантовый генератор).

На промышленных объектах внедряются лазерные установки для высокоточной механической обработки поверхностей из тугоплавких материалов и материалов высокой твердости, для их сверления, точной сварки. В электронных платах приборов автоматики и устройствах СЦБ с помощью лазеров прошивают высокоточные отверстия диаметром в сотые доли толщины человеческого волоса. В медицине с помощью лазеров проводят операции на глазах, сосудах, нервных волокнах.



error: Контент защищен !!