Скалярное произведение векторов b равно. Формула скалярного произведения векторов для плоских задач

Угол между векторами

Рассмотрим два данных вектора $\overrightarrow{a}$ и $\overrightarrow{b}$. Отложим от произвольно выбранной точки $O$ векторы $\overrightarrow{a}=\overrightarrow{OA}$ и $\overrightarrow{b}=\overrightarrow{OB}$, тогда угол $AOB$ называется углом между векторами $\overrightarrow{a}$ и $\overrightarrow{b}$ (рис. 1).

Рисунок 1.

Отметим здесь, что если векторы $\overrightarrow{a}$ и $\overrightarrow{b}$ сонаправлены или один из них является нулевым вектором, тогда угол между векторами равен $0^0$.

Обозначение: $\widehat{\overrightarrow{a},\overrightarrow{b}}$

Понятие скалярного произведения векторов

Математически это определение можно записать следующим образом:

Скалярное произведение может равняться нулю в двух случаях:

    Если один из векторов будет нулевым вектором (Так как тогда его длина равна нулю).

    Если векторы будут взаимно перпендикулярны (то есть $cos{90}^0=0$).

Отметим также, что скалярное произведение больше нуля, если угол между этими векторами острый (так как ${cos \left(\widehat{\overrightarrow{a},\overrightarrow{b}}\right)\ } >0$), и меньше нуля, если угол между этими векторами тупой (так как ${cos \left(\widehat{\overrightarrow{a},\overrightarrow{b}}\right)\ }

С понятием скалярного произведения связано понятие скалярного квадрата.

Определение 2

Скалярным квадратом вектора $\overrightarrow{a}$ называется скалярное произведение этого вектора самого на себя.

Получаем, что скалярный квадрат равен

\[\overrightarrow{a}\overrightarrow{a}=\left|\overrightarrow{a}\right|\left|\overrightarrow{a}\right|{cos 0^0\ }=\left|\overrightarrow{a}\right|\left|\overrightarrow{a}\right|={\left|\overrightarrow{a}\right|}^2\]

Вычисление скалярного произведения по координатам векторов

Помимо стандартного способа нахождения значения скалярного произведения, который вытекает из определения, существует еще один способ.

Рассмотрим его.

Пусть векторы $\overrightarrow{a}$ и $\overrightarrow{b}$ имеют координаты $\left(a_1,b_1\right)$ и $\left(a_2,b_2\right)$, соответственно.

Теорема 1

Скалярное произведение векторов $\overrightarrow{a}$ и $\overrightarrow{b}$ равно сумме произведений соответствующих координат.

Математически это можно записать следующим образом

\[\overrightarrow{a}\overrightarrow{b}=a_1a_2+b_1b_2\]

Доказательство.

Теорема доказана.

Эта теорема имеет несколько следствий:

Следствие 1: Векторы $\overrightarrow{a}$ и $\overrightarrow{b}$ перпендикулярны тогда и только тогда, когда $a_1a_2+b_1b_2=0$

Следствие 2: Косинус угла между векторами равен $cos\alpha =\frac{a_1a_2+b_1b_2}{\sqrt{a^2_1+b^2_1}\cdot \sqrt{a^2_2+b^2_2}}$

Свойства скалярного произведения векторов

Для любых трех векторов и действительного числа $k$ справедливо:

    ${\overrightarrow{a}}^2\ge 0$

    Данное свойство следует из определения скалярного квадрата (определение 2).

    Переместительный закон: $\overrightarrow{a}\overrightarrow{b}=\overrightarrow{b}\overrightarrow{a}$.

    Данное свойство следует из определения скалярного произведения (определение 1).

    Распределительный закон:

    $\left(\overrightarrow{a}+\overrightarrow{b}\right)\overrightarrow{c}=\overrightarrow{a}\overrightarrow{c}+\overrightarrow{b}\overrightarrow{c}$. \end{enumerate}

    По теореме 1, имеем:

    \[\left(\overrightarrow{a}+\overrightarrow{b}\right)\overrightarrow{c}=\left(a_1+a_2\right)a_3+\left(b_1+b_2\right)b_3=a_1a_3+a_2a_3+b_1b_3+b_2b_3==\overrightarrow{a}\overrightarrow{c}+\overrightarrow{b}\overrightarrow{c}\]

    Сочетательный закон: $\left(k\overrightarrow{a}\right)\overrightarrow{b}=k(\overrightarrow{a}\overrightarrow{b})$. \end{enumerate}

    По теореме 1, имеем:

    \[\left(k\overrightarrow{a}\right)\overrightarrow{b}=ka_1a_2+kb_1b_2=k\left(a_1a_2+b_1b_2\right)=k(\overrightarrow{a}\overrightarrow{b})\]

Пример задачи на вычисление скалярного произведения векторов

Пример 1

Найти скалярное произведение векторов $\overrightarrow{a}$ и $\overrightarrow{b}$, если $\left|\overrightarrow{a}\right|=3$ и $\left|\overrightarrow{b}\right|=2$, а угол между ними равен ${{30}^0,\ 45}^0,\ {90}^0,\ {135}^0$.

Решение.

Используя определение 1, получаем

Для ${30}^0:$

\[\overrightarrow{a}\overrightarrow{b}=6{cos \left({30}^0\right)\ }=6\cdot \frac{\sqrt{3}}{2}=3\sqrt{3}\]

Для ${45}^0:$

\[\overrightarrow{a}\overrightarrow{b}=6{cos \left({45}^0\right)\ }=6\cdot \frac{\sqrt{2}}{2}=3\sqrt{2}\]

Для ${90}^0:$

\[\overrightarrow{a}\overrightarrow{b}=6{cos \left({90}^0\right)\ }=6\cdot 0=0\]

Для ${135}^0:$

\[\overrightarrow{a}\overrightarrow{b}=6{cos \left({135}^0\right)\ }=6\cdot \left(-\frac{\sqrt{2}}{2}\right)=-3\sqrt{2}\]

Скалярное произведение векторов (далее в тексте СП). Дорогие друзья! В состав экзамена по математике входит группа задач на решение векторов. Некоторые задачи мы уже рассмотрели. Можете посмотреть их в категории «Векторы». В целом, теория векторов несложная, главное последовательно её изучить. Вычисления и действия с векторами в школьном курсе математики просты, формулы не сложные. Загляните в . В этой статье мы разберём задачи на СП векторов (входят в ЕГЭ). Теперь «погружение» в теорию:

Ч тобы найти координаты вектора, нужно из координат его конца вычесть соответствующие координаты его начала

И ещё:


*Длина вектора (модуль) определяется следующим образом:

Данные формулы необходимо запомнить!!!

Покажем угол между векторами:

Понятно, что он может изменяться в пределах от 0 до 180 0 (или в радианах от 0 до Пи).

Можем сделать некоторые выводы о знаке скалярного произведения. Длины векторов имеют положительное значение, это очевидно. Значит знак скалярного произведения зависит от значения косинуса угла между векторами.

Возможны случаи:

1. Если угол между векторами острый (от 0 0 до 90 0), то косинус угла будет иметь положительное значение.

2. Если угол между векторами тупой (от 90 0 до 180 0), то косинус угла будет иметь отрицательное значение.

*При нуле градусов, то есть когда векторы имеют одинаковое направление, косинус равен единице и соответственно результат будет положительным.

При 180 о, то есть когда векторы имеют противоположные направления, косинус равен минус единице, и соответственно результат будет отрицательным.

Теперь ВАЖНЫЙ МОМЕНТ!

При 90 о, то есть когда векторы перпендикулярны друг другу, косинус равен нулю, а значит и СП равно нулю. Этот факт (следствие, вывод) используется при решение многих задач, где речь идёт о взаимном расположении векторов, в том числе и в задачах входящих в открытый банк заданий по математике.

Сформулируем утверждение: скалярное произведение равно нулю тогда и только тогда, когда данные векторы лежат на перпендикулярных прямых.

Итак, формулы СП векторов:

Если известны координаты векторов или координаты точек их начал и концов, то всегда сможем найти угол между векторами:

Рассмотрим задачи:

27724 Найдите скалярное произведение векторов a и b .

Скалярное произведение векторов мы можем найти по одной из двух формул:

Угол между векторами неизвестен, но мы без труда можем найти координаты векторов и далее воспользоваться первой формулой. Так как начала обоих векторов совпадают с началом координат, то координаты данных векторов равны координатам их концов, то есть

Как найти координаты вектора изложено в .

Вычисляем:

Ответ: 40


Найдём координаты векторов и воспользуемся формулой:

Чтобы найти координаты вектора необходимо из координат конца вектора вычесть соответствующие координаты его начала, значит

Вычисляем скалярное произведение:

Ответ: 40

Найдите угол между векторами a и b . Ответ дайте в градусах.

Пусть координаты векторов имеют вид:

Для нахождения угла между векторами используем формулу скалярного произведения векторов:

Косинус угла между векторами:

Следовательно:

Координаты данных векторов равны:

Подставим их в формулу:

Угол между векторами равен 45 градусам.

Ответ: 45

В случае плоской задачи скалярное произведение векторов a = {a x ; a y } и b = {b x ; b y } можно найти воспользовавшись следующей формулой:

a · b = a x · b x + a y · b y

Формула скалярного произведения векторов для пространственных задач

В случае пространственной задачи скалярное произведение векторов a = {a x ; a y ; a z } и b = {b x ; b y ; b z } можно найти воспользовавшись следующей формулой:

a · b = a x · b x + a y · b y + a z · b z

Формула скалярного произведения n -мерных векторов

В случае n-мерного пространства скалярное произведение векторов a = {a 1 ; a 2 ; ... ; a n } и b = {b 1 ; b 2 ; ... ; b n } можно найти воспользовавшись следующей формулой:

a · b = a 1 · b 1 + a 2 · b 2 + ... + a n · b n

Свойства скалярного произведения векторов

1. Скалярное произведение вектора самого на себя всегда больше или равно нуля:

2. Скалярное произведение вектора самого на себя равно нулю тогда и только тогда, когда вектор равен нулевому вектору:

a · a = 0 <=> a = 0

3. Скалярное произведение вектора самого на себя равно квадрату его модуля:

4. Операция скалярного умножения коммуникативна:

5. Если скалярное произведение двух не нулевых векторов равно нулю, то эти вектора ортогональны:

a ≠ 0, b ≠ 0, a · b = 0 <=> a ┴ b

6. (αa) · b = α(a · b)

7. Операция скалярного умножения дистрибутивна:

(a + b) · c = a · c + b · c

Примеры задач на вычисление скалярного произведения векторов

Примеры вычисления скалярного произведения векторов для плоских задач

Найти скалярное произведение векторов a = {1; 2} и b = {4; 8}.

Решение: a · b = 1 · 4 + 2 · 8 = 4 + 16 = 20.

Найти скалярное произведение векторов a и b, если их длины |a| = 3, |b| = 6, а угол между векторами равен 60˚.

Решение: a · b = |a| · |b| cos α = 3 · 6 · cos 60˚ = 9.

Найти скалярное произведение векторов p = a + 3b и q = 5a - 3 b, если их длины |a| = 3, |b| = 2, а угол между векторами a и b равен 60˚.

Решение:

p · q = (a + 3b) · (5a - 3b) = 5 a · a - 3 a · b + 15 b · a - 9 b · b =

5 |a| 2 + 12 a · b - 9 |b| 2 = 5 · 3 2 + 12 · 3 · 2 · cos 60˚ - 9 · 2 2 = 45 +36 -36 = 45.

Пример вычисления скалярного произведения векторов для пространственных задач

Найти скалярное произведение векторов a = {1; 2; -5} и b = {4; 8; 1}.

Решение: a · b = 1 · 4 + 2 · 8 + (-5) · 1 = 4 + 16 - 5 = 15.

Пример вычисления скалярного произведения для n -мерных векторов

Найти скалярное произведение векторов a = {1; 2; -5; 2} и b = {4; 8; 1; -2}.


Решение: a · b = 1 · 4 + 2 · 8 + (-5) · 1 + 2 · (-2) = 4 + 16 - 5 -4 = 11.

13. Векторным произведением векторов и вектора называется третий вектор , определяемый следующим образом:

2) перпендикулярно, перпендикулярно. (1"")

3) векторы ориентированы также, как и базис всего пространства (положительно или отрицательно).

Обозначают: .

Физический смысл векторного произведения

― момент силы относительно точки О; ― радиус ― вектор точки приложения силы, тогда

причем, если перенести в точку О, то тройка, должна быть ориентирована как вектора базиса.

Таким образом, длина вектора рассчитывается, как корень квадратный из суммы квадратов его координат
. Аналогично рассчитывается длинаn-мерного вектора
. Если вспомнить, что каждая координата вектора – это разность между координатами конца и начала, то мы получим формулу длины отрезка, т.е. евклидова расстояния между точками.

Скалярное произведение двух векторов на плоскости – это произведение длин этих векторов на косинус угла между ними:
. Можно доказать, что скалярное произведение двух векторов= (х 1 , х 2) и= (y 1 , y 2) равно сумме произведений соответствующих координат этих векторов:
= х 1 * y 1 + х 2 * y 2 .

В n-мерном пространстве скалярное произведение векторовX= (х 1 , х 2 ,...,х n) иY= (y 1 , y 2 ,...,y n) определяется, как сумма произведений их соответствующих координат:X*Y= х 1 * y 1 + х 2 * y 2 + ... + х n * y n .

Операция умножения векторов друг на другу аналогична умножению матрицы-строки на матрицу-столбец. Подчеркнем, что в результате будет получено число, а не вектор.

Скалярное произведение векторов обладает следующими свойствами (аксиомы):

1) Коммутативное свойство: X*Y=Y*X.

2) Дистрибутивное относительно сложения свойство: X(Y+Z) =X*Y+X*Z.

3) Для любого действительного числа 
.

4)
, еслиX– не нулевой вектор;
еслиX– нулевой вектор.

Линейное векторное пространство, в котором задано скалярное произведение векторов, удовлетворяющее четырем соответствующим аксиомам, называется евклидовым линейным векторным пространством .

Легко заметить, что при умножении любого вектора самого на себя мы получим квадрат его длины . Поэтому по-другомудлину вектора можно определить, как корень квадратный из его скалярного квадрата:.

Длина вектора обладает следующими свойствами:

1) |X| = 0Х = 0;

2) |X| = ||*|X|, где– действительное число;

3) |X*Y||X|*|Y| (неравенство Коши-Буняковского );

4) |X+Y||X|+|Y| (неравенство треугольника ).

Угол между векторами вn-мерном пространстве определяется, исходя из понятия скалярного произведения. В самом деле, если
, то
. Эта дробь не больше единицы (согласно неравенству Коши-Буняковского), поэтому отсюда можно найти.

Два вектора называют ортогональными илиперпендикулярными , если их скалярное произведение равно нулю. Из определения скалярного произведения следует, что нулевой вектор ортогонален любому вектору. Если оба ортогональных вектора ненулевые, то обязательноcos= 0, т.е=/2 = 90 о.

Рассмотрим еще раз рисунок 7.4. Из рисунка видно, что косинус угла наклона вектора к горизонтальной оси можно рассчитать как
, а косинус угланаклона вектора к вертикальной оси как
. Эти числа принято называтьнаправляющими косинусами . Легко убедиться, что сумма квадратов направляющих косинусов всегда равна единице:cos 2 +cos 2 = 1. Аналогично можно ввести понятия направляющих косинусов и для пространств большей размерности.

Базис векторного пространства

Для векторов можно определить понятия линейной комбинации ,линейной зависимости инезависимости аналогично тому, как эти понятия были введены для строк матрицы. Также справедливо, что если векторы линейно зависимы, то по крайней мере один из них можно линейно выразить через остальные (т.е. он является их линейной комбинацией). Верно и обратное утверждение: если один из векторов является линейной комбинацией остальных, то все эти векторы в совокупности линейно зависимы.

Отметим, что если среди векторов a l , a 2 ,...a m есть нулевой вектор, то эта совокупность векторов обязательно линейно зависима. В самом деле, мы получим l a l + 2 a 2 +...+ m a m = 0, если, например, приравняем коэффициент j при нулевом векторе к единице, а все остальные коэффициенты – к нулю. При этом не все коэффициенты будут равны нулю ( j ≠ 0).

Кроме того, если какая-то часть векторов из совокупности векторов линейно зависимы, то и все эти вектора - линейно зависимы. В самом деле, если какие-то вектора дают нулевой вектор в своей линейной комбинации с коэффициентами, которые не являются одновременно нулевыми, то к этой сумме произведений можно добавить остальные вектора, умноженные на нулевые коэффициенты, и она по-прежнему будет нулевым вектором.

Как определить, являются ли вектора линейно зависимыми?

Например, возьмем три вектора: а 1 = (1, 0, 1, 5), а 2 = (2, 1, 3, -2) и а 3 = (3, 1, 4, 3). Составим из них матрицу, в которой они будут являться столбцами:

Тогда вопрос о линейной зависимости сведется к определению ранга этой матрицы. Если он окажется равным трем, то все три столбца – линейно независимы, а если окажется меньше, то это будет говорить о линейной зависимости векторов.

Так как ранг равен 2, вектора линейно зависимы.

Отметим, что решение задачи можно было бы начать и с рассуждений, которые основаны на определении линейной независимости. А именно, составить векторное уравнение  l a l + 2 a 2 + 3 a 3 = 0, которое примет вид l *(1, 0, 1, 5) + 2 *(2, 1, 3, -2) + 3 *(3, 1, 4, 3) = (0, 0, 0, 0). Тогда мы получим систему уравнений:

Решение этой системы методом Гаусса сведется к получению той же самой ступенчатой матрицы, только в ней будет еще один столбец – свободных членов. Они все будут равны нулю, так как линейные преобразования нулей не могут привести к другому результату. Преобразованная система уравнений примет вид:

Решением этой системы будет (-с;-с; с), где с – произвольное число; например, (-1;-1;1). Это означает, что если взять  l = -1; 2 =-1 и 3 = 1, то l a l + 2 a 2 + 3 a 3 = 0, т.е. вектора на самом деле линейно зависимы.

Из решенного примера становится ясно, что если взять число векторов больше, чем размерность пространства, то они обязательно будут линейно зависимы. В самом деле, если бы в этом примере мы взяли пять векторов, то получили бы матрицу 4 х 5, ранг которой не мог бы оказаться больше четырех. Т.е. максимальное число линейно независимых столбцов все равно не было бы больше четырех. Два, три или четыре четырехмерных вектора могут оказаться линейно независимыми, а пять и больше – не могут. Следовательно, на плоскости могут оказаться линейно независимыми не более двух векторов. Любые три вектора в двумерном пространстве – линейно зависимы. В трехмерном пространстве любые четыре (или более) вектора – всегда линейно зависимы. И т.п.

Поэтому размерность пространства можно определить, как максимальное число линейно независимых векторов, которые могут в нем быть.

Совокупность n линейно независимых векторов n-мерного пространства R называют базисом этого пространства.

Теорема. Каждый вектор линейного пространства можно представить в виде линейной комбинации векторов базиса, и притом единственным способом.

Доказательство. Пусть векторы e l , e 2 ,...e n образуют базисn-мерного пространства R. Докажем, что любой вектор Х является линейной комбинацией этих векторов. Поскольку вместе с вектором Х число векторов станет (n +1), эти (n +1) векторов будут линейно зависимы, т.е. существуют числа l , 2 ,..., n ,, не равные одновременно нулю, такие что

 l e l + 2 e 2 +...+ n e n +Х = 0

При этом 0, т.к. в противном случае мы получили бы l e l + 2 e 2 +...+ n e n = 0, где не все коэффициенты l , 2 ,..., n равны нулю. Это означает, что векторы базиса оказались бы линейно зависимы. Следовательно, можно разделить обе части первого уравнения на:

( l /)e l + ( 2 /)e 2 +...+ ( n /)e n + Х = 0

Х = -( l /)e l - ( 2 /)e 2 -...- ( n /)e n

Х = x l e l +x 2 e 2 +...+x n e n ,

где х j = -( j /),
.

Теперь докажем, что такое представление в виде линейной комбинации является единственным. Предположим противное, т.е. что существует другое представление:

Х = y l e l +y 2 e 2 +...+y n e n

Вычтем из него почленно полученное ранее выражение:

0 = (y l – х 1)e l + (y 2 – х 2)e 2 +...+ (y n – х n)e n

Так как векторы базиса линейно независимы, получим, что (y j - х j) = 0,
, т.е.y j = х j . Итак, выражение оказалось тем же самым. Теорема доказана.

Выражение Х = x l e l +x 2 e 2 +...+x n e n называютразложением вектора Х по базису e l , e 2 ,...e n , а числа х l , х 2 ,...х n -координатами вектора х относительно этого базиса, или в этом базисе.

Можно доказать, что если nненулевых векторовn-мерного евклидова пространства попарно ортогональны, то они образуют базис. В самом деле, умножим обе части равенства l e l + 2 e 2 +...+ n e n = 0 на любой вектор е i . Получим  l (e l *е i) +  2 (e 2 *е i) +...+  n (e n *е i) = 0   i (e i *е i) = 0   i = 0 для  i.

Векторы e l , e 2 ,...e n n-мерного евклидова пространства образуютортонормированный базис , если эти векторы попарно ортогональны и норма каждого из них равна единице, т.е. если е i *e j = 0 приi≠jи |е i | = 1 дляi.

Теорема (без доказательства). Во всяком n-мерном евклидовом пространстве существует ортонормированный базис.

Примером ортонормированного базиса являют система n единичных векторов е i , у которыхi-я компонента равна единице, а остальные компоненты равны нулю. Каждый такой вектор называетсяорт . Например, вектора-орты (1, 0, 0), (0, 1, 0) и (0, 0, 1) образуют базис трехмерного пространства.

Угол между векторами

Рассмотрим два данных вектора $\overrightarrow{a}$ и $\overrightarrow{b}$. Отложим от произвольно выбранной точки $O$ векторы $\overrightarrow{a}=\overrightarrow{OA}$ и $\overrightarrow{b}=\overrightarrow{OB}$, тогда угол $AOB$ называется углом между векторами $\overrightarrow{a}$ и $\overrightarrow{b}$ (рис. 1).

Рисунок 1.

Отметим здесь, что если векторы $\overrightarrow{a}$ и $\overrightarrow{b}$ сонаправлены или один из них является нулевым вектором, тогда угол между векторами равен $0^0$.

Обозначение: $\widehat{\overrightarrow{a},\overrightarrow{b}}$

Понятие скалярного произведения векторов

Математически это определение можно записать следующим образом:

Скалярное произведение может равняться нулю в двух случаях:

    Если один из векторов будет нулевым вектором (Так как тогда его длина равна нулю).

    Если векторы будут взаимно перпендикулярны (то есть $cos{90}^0=0$).

Отметим также, что скалярное произведение больше нуля, если угол между этими векторами острый (так как ${cos \left(\widehat{\overrightarrow{a},\overrightarrow{b}}\right)\ } >0$), и меньше нуля, если угол между этими векторами тупой (так как ${cos \left(\widehat{\overrightarrow{a},\overrightarrow{b}}\right)\ }

С понятием скалярного произведения связано понятие скалярного квадрата.

Определение 2

Скалярным квадратом вектора $\overrightarrow{a}$ называется скалярное произведение этого вектора самого на себя.

Получаем, что скалярный квадрат равен

\[\overrightarrow{a}\overrightarrow{a}=\left|\overrightarrow{a}\right|\left|\overrightarrow{a}\right|{cos 0^0\ }=\left|\overrightarrow{a}\right|\left|\overrightarrow{a}\right|={\left|\overrightarrow{a}\right|}^2\]

Вычисление скалярного произведения по координатам векторов

Помимо стандартного способа нахождения значения скалярного произведения, который вытекает из определения, существует еще один способ.

Рассмотрим его.

Пусть векторы $\overrightarrow{a}$ и $\overrightarrow{b}$ имеют координаты $\left(a_1,b_1\right)$ и $\left(a_2,b_2\right)$, соответственно.

Теорема 1

Скалярное произведение векторов $\overrightarrow{a}$ и $\overrightarrow{b}$ равно сумме произведений соответствующих координат.

Математически это можно записать следующим образом

\[\overrightarrow{a}\overrightarrow{b}=a_1a_2+b_1b_2\]

Доказательство.

Теорема доказана.

Эта теорема имеет несколько следствий:

Следствие 1: Векторы $\overrightarrow{a}$ и $\overrightarrow{b}$ перпендикулярны тогда и только тогда, когда $a_1a_2+b_1b_2=0$

Следствие 2: Косинус угла между векторами равен $cos\alpha =\frac{a_1a_2+b_1b_2}{\sqrt{a^2_1+b^2_1}\cdot \sqrt{a^2_2+b^2_2}}$

Свойства скалярного произведения векторов

Для любых трех векторов и действительного числа $k$ справедливо:

    ${\overrightarrow{a}}^2\ge 0$

    Данное свойство следует из определения скалярного квадрата (определение 2).

    Переместительный закон: $\overrightarrow{a}\overrightarrow{b}=\overrightarrow{b}\overrightarrow{a}$.

    Данное свойство следует из определения скалярного произведения (определение 1).

    Распределительный закон:

    $\left(\overrightarrow{a}+\overrightarrow{b}\right)\overrightarrow{c}=\overrightarrow{a}\overrightarrow{c}+\overrightarrow{b}\overrightarrow{c}$. \end{enumerate}

    По теореме 1, имеем:

    \[\left(\overrightarrow{a}+\overrightarrow{b}\right)\overrightarrow{c}=\left(a_1+a_2\right)a_3+\left(b_1+b_2\right)b_3=a_1a_3+a_2a_3+b_1b_3+b_2b_3==\overrightarrow{a}\overrightarrow{c}+\overrightarrow{b}\overrightarrow{c}\]

    Сочетательный закон: $\left(k\overrightarrow{a}\right)\overrightarrow{b}=k(\overrightarrow{a}\overrightarrow{b})$. \end{enumerate}

    По теореме 1, имеем:

    \[\left(k\overrightarrow{a}\right)\overrightarrow{b}=ka_1a_2+kb_1b_2=k\left(a_1a_2+b_1b_2\right)=k(\overrightarrow{a}\overrightarrow{b})\]

Пример задачи на вычисление скалярного произведения векторов

Пример 1

Найти скалярное произведение векторов $\overrightarrow{a}$ и $\overrightarrow{b}$, если $\left|\overrightarrow{a}\right|=3$ и $\left|\overrightarrow{b}\right|=2$, а угол между ними равен ${{30}^0,\ 45}^0,\ {90}^0,\ {135}^0$.

Решение.

Используя определение 1, получаем

Для ${30}^0:$

\[\overrightarrow{a}\overrightarrow{b}=6{cos \left({30}^0\right)\ }=6\cdot \frac{\sqrt{3}}{2}=3\sqrt{3}\]

Для ${45}^0:$

\[\overrightarrow{a}\overrightarrow{b}=6{cos \left({45}^0\right)\ }=6\cdot \frac{\sqrt{2}}{2}=3\sqrt{2}\]

Для ${90}^0:$

\[\overrightarrow{a}\overrightarrow{b}=6{cos \left({90}^0\right)\ }=6\cdot 0=0\]

Для ${135}^0:$

\[\overrightarrow{a}\overrightarrow{b}=6{cos \left({135}^0\right)\ }=6\cdot \left(-\frac{\sqrt{2}}{2}\right)=-3\sqrt{2}\]



error: Контент защищен !!